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Modal Analysis Applied 
and Coaxial 

to Circular, Rectangular, 
Waveguides 

1. Introduction 
Modal Analysis has been shown to be a highly accurate and 

versatile method for analyzing a wide variety of waveguide 
devices [l] - [4]. The method is capable of accounting for 
multiple reflections within the device, stored energy at each 
discontinuity, and higher-order mode propagation if it occurs. 
Its high accuracy makes it useful for tolerance studies after a 
final design has been determined. This report compares com- 
puted and experimental results for the scattering parameters 
of three examples. One example is taken from each of the 
following waveguide types: rectangular waveguide, circular 
waveguide, and coaxial waveguide propagating the TE,, mode. 
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This report summarizes recent developments in the analysis of various waveguide com- 
ponents and feedhorns using Modal Analysis (Mode Matching Method). A brief descrip- 
tion of  the theory is presented, and the important features of the method are pointed out. 
Specific examples in circular, rectangular, and coaxial waveguides are included, with com- 
parisons between the theory and experimental measurements. Extensions to the methods 
are described. 

II. Theory 
The theory described below is well known and is summa- 

rized in [ l ]  . In applying the modal analysis method, the wave- 
guide device is broken up into a series of sections that are 
joined by a step discontinuity as is shown in Fig. 1 .  For smooth 
changes in waveguide dimensions, the change is approximated 

by a large number of steps. At this point, the type of wave- 
guide is arbitrary but the common area between the two 
guides must be identical to the cross-section of the smaller 
waveguide. This eliminates a class of offset connections but 
is usually not important for analyzing a practical device. In 
addition, for the circular waveguide and the coax, all guides 
are required to possess the same center line. This simplifies 
the analysis since only modes with one azimuthal variation 
need to be considered. Again, this is not restrictive for most 
practical applications. Next, the development of some of the 
important equations is presented. In Fig. 1, the fields to the 
left of the junction (z < 0) are represented as a sum of the 
normal modes of waveguide I. 

M 

m = l  
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Here M is chosen large enough for convergence, and_e,, 
and _hrm are the normalized vector functions for the mth mode. 
For example, in a circular waveguide, m = 1 = TE,, , m = 2 
= TM,,, m = 3 = TE,,, etc. A,, represents the magnitude of 
the forward traveling mth mode, and B,, the magnitude of 
the reverse traveling rnth mode. 

In Eqs. (8) and (9), B, and B,, are vectors containing the 
reflected-mode amplitudes, while A , and A ,, contain the 
incident-mode amplitudes. The derivation of these equations 
is given in the Appendix. 

For the normalized vectors, the power carried by the rnth 

The normalization of g,, and&, is such that 
forward traveling mode is given by-I A,, 12, and for the mth 
reverse traveling mode is I BI, I,. 

Next, the matrices for a straight section of length L are 
needed. The solution is trivial, giving 

(eIm X him) ds = R m m  (3) 

and from the orthogonality of the waveguide mod 

Similarly, in region I1 

where [O] is the zero matrix and [-y12] and are diagonal N 
iP z e-iP,z (5) matrices with elements 

= (%In e +%In ) g , I n  

N , 
H,, = - ( A , , ,  e’’,’ -BIIne- iPnz)~IIn  (6)  yn being the propagation constant for the nth mode and L 

being the section length. n= 1 

where N is the number of modes chosen in region 11. Rela- 
tions analogous to Eqs. (3) and (4) hold for this region also. 

This completes the summary of the required equations for 
each step in the analysis. Using these results, matrices for each 
step and each straight section in the device are determined and 
then combined using equations in [ 1 ~  . At the completion of 
the analysis, the overall matrix is obtained, relating the nor- 
malized output vectors B, and B,, at the ends of the device to 
the normalized input vectors A ,  and A , , .  

Matching the electric and magnetic fields over the common 
aperture results in the following scattering matrix equation. 

B = [SI A (7) 

and 

= [4 
A =[;I In many situations, a set of modes is incident only on the 

left end of a device and one wants to determine the reflected 
and transmitted modes. The user specifies the input mode 
vector A , ,  A , ,  = 0, and Eqs. (16) and (17) become 

(9) 

(10) 
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111. Results 
Computer programs [5] have been written to carry out the 

above calculations for rectangular, circular, and coaxial wave- 
guides. For the junctions involved, the integrals of Eq. (A-6) 
can be carried out in closed form, which greatly simplifies the 
programming. Three examples, one in each waveguide type, 
are used to  demonstrate the excellent agreement between theory 
and experiment. All of the measurements were made using an 
HP 8510 network analyzer and a full two-port calibration. 

The first example, shown in Fig. 2 ,  is a circular waveguide 
transition. For the theoretical results, 25 modes were used in 
the input section. The number of modes used in subsequent 
sections is chosen by the program for optimum convergence 
[ l ]  . The return loss measurements (Fig. 3a) are typically within 
0.2 dB, except near the minimum reflection point at 8.25 GHz. 
Phase results (Fig. 3b) are also in close agreement, typically 
within a few degrees across the band. For nearly every obser- 
vation point, the difference between theory and measurement 
is within the accuracy specification of the network analyzer. 
Slight inaccuracies in the waveguide dimensions and rounding 
of some of the corners can also account for the small disagree- 
ment that remains. Figure 4 illustrates the convergence of the 
solution at 8 GHz as the number of modes used in the input 
section is increased. From these plots, we see that the solution 
has stabilized once 20 or more modes are used in the input 
waveguide. The number of modes required for convergence 
depends on the particular device, but in general larger wave- 
guides with respect to a wavelength and thin irises require that 
more modes be used in order to get the same accuracy. 

A rectangular waveguide example is shown in Fig. 5 and 
both theoretical and experimental results are given in Fig. 6. 
The device is a WR125 to 0.8-inch square-to-WR125 transition 
that was fabricated for use in the ring resonator at 8.51 GHz. 
The device consists of nine waveguide sections. The figure 
shows that, as in the previous example, the theoretical and 
experimental results are in excellent agreement. Only slight 
discrepancies appear near the minimum reflection point. More 
modes may be needed to represent the field in this region, or 
else the 0.030-inch radius on all corners, which was not 

accounted for in the calculation, may have a stronger effect 
in this frequency band. For this example, modes with first 
index m less than or equal to  7 and second index n less than 
or equal to 6 were used in the input guide. As with the circular 
waveguide program, maximum mode indices in the following 
sections are chosen according to waveguide size and symmetry 
considerations. 

The final example is the coaxial iris shown in Fig. 7 ,  with 
theoretical and experimental return loss results shown in 
Fig. 8. The coaxial region is excited by a TE, circular wave- 
guide mode that excites only the higher-order coax modes 
with first index equal to  1; the normal TEM coax mode is not 
excited in this case. Measurements of the iris were made by 
calibrating in the circular waveguide and using the time domain 
gating features of the HP 8510 network analyzer to isolate 
the reflections from only the iris. The only other complica- 
tion associated with the coax is that a transcendental equa- 
tion must be solved for each mode in each section in order 
to determine a cutoff wavelength. This increases the computa- 
tion time required to solve a coax problem compared to a 
similar circular or rectangular waveguide problem. As with 
the previous examples, the agreement between theory and 
experiment is good, particularly considering the errors intro- 
duced by using the time domain features of the HP 8510. 

IV. Conclusion 
Three representative examples have been given to  demon- 

strate the accuracy of the modal analysis method. A large 
number of waveguide devices such as horns, corrugated wave- 
guides, transitions, filters, and smooth tapers can be analyzed 
using these programs. In addition, several extensions have 
been made to the codes in order to  allow for differing dielec- 
tric constants in the sections, making them useful for window 
design. For large smooth-wall or corrugated horns, the reflec- 
tion at the aperture may be neglected, and the far-field pattern 
can be found from the propagating modes in the aperture. In 
addition, the important case of ring-loaded slots [6] ,which is 
a combination of the coaxial and circular program, has also 
been programmed, but no experimental results are presently 
available. 
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Fig. 1. Parameters for a single junction. 
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Fig. 2. Circular waveguide example. 
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Fig. 3. Circular waveguide results: (a) return loss and (b) phase. 
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Fig. 4. Convergence for circular waveguide example: (a) return 
loss and (b) phase. 
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Fig. 5. Rectangular waveguide example. 
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Fig. 6. Rectangular waveguide return loss results. 
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Fig. 7. Coaxial waveguide example. 
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Fig. 8. Coaxial waveguide return loss results. 
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Appendix 

Derivation of the Waveguide Scattering Matrix Equation 

To derive Eq. (lo),  the electric fields inside the common giving 
aperture between the two regions are matched. 

N 

- EI = _EII inside SI (A-1) Rmm(AIm -BIm) = Pmn(BIIn 
n= 1 

I EI X_h,,, - - E,, X_h,,, inside Si (A-2) (A-10) 

Equations (A-5) and (A-10) may be recast into a more com- 
I Since E = 0 on the conductor making up the surface SI,- SI. pact matrix form, giving 
i the integral on the right-hand side of Eq. (A-3) may be extended 

~ 

over ,SI,. [PI (AI +B, )  = [Ql (AII +B,,)  (A-1 1) 

[RI (AI -q) = PIT (Bl1 - A l I )  (A-12) CE, x hIIJ  * = x b I I n )  * ds 111 
Here [PI is the transpose of the matrix [PI , and [ R ]  is an 

(A-4) 

Using the properties in Eqs. (1)-(6) the following is obtained: 

m X m diagonal matrix, and [Q] is an n X n diagonal matrix. 

L 
Next, Eq. (A-12) is converted into a scattering matrix for- 

mat relating the normalized output vectors B, and B,, to the 
I M normalized input vectors A I  and A I , .  

C (AIrn +BIm)Pmn = (AII, +BII,)Q,, 
m =  1 

(A-5) 
The submatrices [ S , , ] ,  [S, , ]  , [S,,], and [S,,] arederived 

I from the [PI, [PIT [R] , and [e] matrices by simple matrix 
where math and Eqs. (A-1 1) and (A-12). 

[SI11 = [ d l  ([R] + [PIT [Pl)-'([R] - [PIT [PI) [fil-' (A-6) 

(A-1 3) 
l and 

i r 

The other boundary condition needed is 
P2,1 = [Ql ([el + [PI P I T ) - '  ([el - PI [PIT) 1dDI-l 

(A- 16) - HI = HI, within SI (-4-8) 

Following a similar line of reasoning In these equations. [ I ]  represents the unit matrix and 

Eqs. (3) and (7). These factors form the normalization of the 

between the two different waveguides. 

[GI [a1 = [RI? and [&I [&I = WQI are fmm 

vectors A and B. This completes the solution for the junction ( C I ~  x 81) * ds = (CIm x * ds (A-9) 


